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NON-LINEAR TRANSVERSE ELECTRON BEAM DYNAMICS
IN A MODIFIED BETATRON ACCELERATOR

I. Introduction

High energy accelerators capable of producing high current electron beams

are rapidly becoming an active area of research. The motivation for

developing these devices is related to potential applications of high current

beams to the generation of high power coherent radiationI, x-ray radiography

and national defense2 .

Among the various accelerating schemes that have the potential to produce

ultra-high power electron beams, induction accelerators3 appear to be the most

V promising. Induction accelerators are inherently low impedance devices and

thus are ideally suited to drive high current beaus. The acceleration process

is based on the inductive electric field produced by a time varying magnetic

field. The electric field can be either continuous or localized along the

acceleration path.

Quite naturally, induction accelerators are divided into linear and

cyclic. The linear devices are in turn divided into Astron-type - 8 , Radlac-

type9 ' and auto-accelerator1' 12 . In the first type, ferromagnetic

induction cores are used to generate the accelerating field, while "air core"

cavities are used in the second. In the auto-accelerator the air core

cavities are excited by the beam's self fields rather than external fields.

Similarly, cyclic devices can be divided into conventional 13- 15 and modified

betatrons 16-20 The field configuration in the modified betatron includes, in

addition to the time varying betatron magnetic field, which is responsible for

the acceleration, a strong toroidal magnetic field that substantially improves

U' the stability of the accelerated beam.

The linear dynamics of high current electron rings in modified betatron

fields, with and without stellarator fields, has been studied extensively

Maumipt approved July 26,1984.
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16-22during the last few years These studies are based on the linearized

Vequations of motion, i.e., they assume that the electron ring is confined near

the minor axis of the torus.

In this paper we study the transverse ring dynamics in a modified

betatron accelerator using a different approach. The ring orbits are not

determined from the equations of motion but rather from the two exact

constants of the motion and the potentials at the centroid of the ring. The

main advantage of the present approach is that the ring orbits can be

* determined over the entire minor cross-section of the torus and not only near

its minor axis. The topology of orbits near the wall of the toroidal vacuum

chamber is of vital importance during injection, since optimization of the

confining region requires the beam to be injected far away from the minor axis

of the torus24 '25. It has been found that the shape of the ring orbits, in

-A the transverse to the toroidal magnetic field plane, can be very complex, in

particular in the high current limit.

II. Constants of the Motion

Consider an electron ring inside a perfectly conducting torus of circular

_' ~cross section as shown in Fig. 1. The center of the ring is located at a
~2

distance Ar,Az from the minor axis of the torus. The kinetic energy mc Y of a

reference electron that is located at the position r,z varies according to the

equation

inc2  d (r,z) - 1e1 • (r,z), (1)

where E (r,z) is the total electric field at the position of the reference

electron. The electric field is related to the space charge $ and magnetic

2
'
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vector potential A by

E (rz) - - - (2), ', c at

where the total time derivative of 4 is given by

dot 3
dt =  "t +  v -.. (3)

1%

For the problem of interest, the accelerating fields vary slowly in time and

thus

3 - 0. (4)

Combining Eqs. (1) to (4), we obtain

dy(r.z) el df(rz) .
dt dt

or

y(r,z) - 4 O(r,z) - constant. (5)
mc

According to Eq. (5) the sum of the kinetic and potential energy of the

reference electron is conserved.

Since the fields of the modified betatron configuration are independent

of the toroidal angle e, the canonical angular momentum P0  is also a constant

of the motion, i.e.,

" y - 4e r A0 = constant, (6)

e $

3



where A9 is the toroidal component of the total magnetic vector potential

and v, is the toroidal velocity of the reference electron.

Assuming that v. a v and eliminating y from Eqs. (5) and (6), it is obtained

- + e A(r,z) + - 1(r,z) - constant, (7a)mcr -4 e1 -4mc mc

or, at the centroid of the ring

0- + A8 (R,Z)) 2  +/2 -+1 . (RZ) " constant. (7b)

Mc mc

* For very high energy beams, i.e., when y > 1, Eq. (7b) is reduced to

mc"l + .4 [A (R,Z) - *(R,Z)] - constant. (7c)

This non-linear conservation law can furnish very useful information on

the motion of the ring in the r,z plane, provided that the potentials A.

and 0 at the center of the ring are known. It should be noticed that Eqs. (7)

are independent of the toroidal magnetic field.

,

III. The Potentials

In Eq. (7), the total magnetic vector potential A8(r,z) is

A e(rz) a Aext(rz) + Aeself(r,z),I ext (rz))=self

where A xt(r,z) is the external and A self(r,z) is the self magnetic vectorj potential.

4



It is assumed that the betatron magnetic field is described by

n 2etr r2(rz) z -o r' 2-n r (2-n) n

where Bzo is the magnetic field at r-ro, z - o and n is the external field

index, i.e.,

n y - -)

For a cylindrical electron beam inside a straight perfectly conducting

cylindrical pipe of circular cross section, the self potentials can be

computed exactly, even for large beam displacements from the minor axis of the

torus. In the local coordinate system p,+ the self potentials inside the

beam, i.e., for i.-1 ( rb are given by

2 22

2self 2IeI N0 { 2 tn -- [+ +n-2+ 2 cos (#-a )]Sb 2 rb 2

b

- ] t(a a ) -1 cos (-a)}, (9a)

and

- 1e , "2 n + A2 - 2 po A cos (-)J '

a~. r orb

ex z

- ~ (-) (~)£~cor (-~), 9b
. " " '", ' " . . '' '.' Y; " " "4 . €. - r. - . .. . . . . ...... . . . .. - -. . .. . - ....t.-i .. € .'



At the beam center, i.e., for p - .A and a = a, Eqs. (9a) and (9b) become

%+

s e l f NR 
_- )n + Z 2

A8  (RZ) - -2 jelIL So r1/2 b + In - a2+n, (10a)

and

1(RZ) (R-r ) 2 + Z22 eAn12 An+ 2 ],(lOb)

where NI is the linear electron density, rb is the minor radius of the beam,

a is the minor radius of the conducting pipe and M v /c.

Figure 2 shows the ratio -A elf/2N l (vIe c) from Eq. (10a) at Z m

together with results from the computer code PANDIRA. This code solves the

differential equations for I and 0 in a non-uniform triangular mesh in r-z

coordinates and its present version has been developed by R.F. Holsinger. The

various parameters for the runs shown in Figs. 2 to 5 are listed in Table 1.

The agreement between Eq. (10a) and the numerical results is excellent. The

maximum difference between the analytical and numerical results is less than

0.4%.
self self

Figure 3 shows the stream function - RA8  • In contrast to A8  , the

stream function * peaks away from the minor axis of the torus. The radial

displacement of the peak can be computed from 3*/3R = 0 and is given by the

relation

AP a (a/2) (a/r0 ) (1/2+ An a/rb).

This relation predicts that * peaks 2.8 cm from the minor axis, which is not

by far-off from the 2.6 cm of Fig. 3.

Results for the electrostatic potential are given in Fig. 4. Again the

agreement between Eq. (10b) and numerical results is excellent. The maximum

6



difference A4 between the electrostatic potential computed from PANDIRA and

that of Eq. (lOb) is less than 2%.

Figure 5 shows the stream function * for a torus with a major radius ro -

32 cm. In agreement with the approximate expression for A the displacement

of the peak increased by about a factor of 3.

To obtain a better understanding of the potentials inside a perfectly

conducting torus, we solved 26 the differential equations for 0 and I to first

order in the ratio a/R, but to any order in the normalized displacement &/a.

For a constant particle density no ring and to second order in A/a, the

electrostatic potential and the stream function * at the center of the ring

are given by

ii (R-ro) 2  + Z2

.(RZ) " I- 2 N1 1.1 1/2+ tu (a/rb) - 2
a

8a 2  R

,5, , . (-re)2 + Z2

X(R,Z) -- 2 N e R [ 1/2I+ In (a/rb) - 2
a

3rb2 0)] for constant Clb); 8a2  R

and

- [1/2 +N- (R-r0 )2 + Z
2  rb2 (R-r0 )

- 2eIR 11/2 + in(a/rb) a 2 - "' J

for , constant. (lic)

g .A 7



Similarly, the fields at the centroid of the ring are given by

Em 2IeI"J ( -) a b

r a a (2R n -+jj-] (1aIt

2reINI

-- a (12b)

2IeIN I e z
B r - a (a). (12c)

B IeI.,.+ (R-r0 ao a 2)
B - a a (-) r b+

+ (3rb 2/8e)], for e - constant, (12d)

4;2

and

!: 2IeINl0e _(--o )

z a a b

42

r 2
+ (f-)], for -. constant. (12e)

The toroidal term in Eq. (11) is very small for the parameters of interest

and therefore it is not surprising that the potential at the center of the

ring are approximately cylindrical.

For low energy rings the small toroidal term could be important and could

have a profound effect on the shape of the orbits. However, when y >> 1, the

potentials for no - constant and J constant become approximately equal and

hence they do not contribute substantially in Eq. (7c).

'Aor-J .



IV. Transverse Ring Orbits

Equation (7b) has been solved numerically, using the potentials of Eq.

(11). Typical macroscopic beam orbits in the r,z plane are shown in Figs. 6

to 8. The various parameters for those runs are listed in Table II. Only

orbits that are at least one beam minor radius away from the wall are shown.

Each orbit corresponds to a different value of the constant in Eq. (7b). A

striking feature of the results is the sensitivity of the orbits to the value

of the constant in Eqs. (7).

The number marked in every fourth orbit is equal to 104 [constant -

<constant>], where the average value of the constant, i.e. <constant> for each

run is shown at the top of the figure. For all the cases tested, less than 3%

change in the constant of the motion was sufficient to generate orbits that

extend over the entire minor cross-section of the torus. Orbits shown with

solid lines correspond to a constant that is greater than <constant> and those

-./ shown with a dashed line correspond to a constant that is less than

<constant>.

All the orbits close inside the vacuum chamber. However, a fraction of

them lie inside the annular region that extends from the dotted-dashed line to

the wall. This region has a width that is less than the beam radius and hence

* part of the beam will strike the wall.

Ring orbits in the r,z plane from Eq. (7b) using the potentials of Eq.

(10), i.e., emitting the toroidal terms, are shown in Figs. 9 to 11. It is

apparent that there is not any noticeable difference between these orbits and

those of Figs. 6 to 8.

16.. .. .%- . -,A -* ., %.J~. .1 'tI W .% . A .. W "



The predictions of Eq. (7b) are in very good agreement with the results

from our particle in cell (PIC) computer simulation. 2 0  Figures 12 to 14 show

three computer simulation runs. As may be seen from Table III, with the

exception of the betatron field, the various parameters in the simulation are

the same with those of Figs. 6 to 8. The slightly lower value of the betatron

field in Figs. 12 to 14 is related to the different radial profiles for J in

*the simulation and the potentials of Eq. (11). The orbit wiggles are due to

the finite ring emittance, which was taken zero in the derivation of Eq.

(7b). It should be noticed that in these computer simulation runs the

electron ring was reasonably well matched to the magnetic field as it is

manifested from the small variations in the axial and radial ring envelopes

Nshown in Fig. 15.

In the general case, it is difficult to derive an explicit expression for

the ring orbits in the transverse plane from Eqs. (7b) and (11). However, in

the limit Y2 >M, B/B = and v/y << 1, such an expression can be obtained

near the minor axis of the torus.

Since B B and YB = y - 1/2Y, Eqs. (5)and (6) give

pP

+ me Ae  +4e (Ae -_ = constant G. (13)
Mc mc

Expanding Y near r0 and using Eq. (5), it is obtained

. .r + -r r Ar,
mc 0 0

where Ar - R-ro . It is shown in the next section that --- 1 - 0 and thus the
0

above equation becomes

" Y-YO -4 ArI Ar. (14)
- mc O

10

% %



From Eqs. (11a) and (llc), the difference in the self potentials can be

written as

self ia r+1Z2  rb Ar (1-1) (15)A- - . 2N. iei 11/2 + In - 2 82 R 

rb a 8a

Since

I-6 1-0 = 1/2y2 and substituting Sy from Eq. (14) in the expansion

for I/Y2  it is obtained

[1 2 le r r (16)
2y o mc r

Similarly, expanding 1/2y as

2 " °  r,(17)

2y 2ryo 2ymc ar'r(,

and 1/R as

2
I/: Ar +  ) , (18)

0j. 0 0

.5,

and using a linear expression for the external vector potential

.1*

ext 2 - Zn
o r 1+ 2] (19)">eA zo 0 2 2

2r 2r

5i'.oo

d'.

.5. 11

4



-.-.

Eqs. (13)-to (19) give

8 next r vr r ext r vr 2  2zo 0 0 (&0 Zc (1-n) - 0 ] ('r') + zo O"'"n --- ]C-
~mcr + cr [-2c-n-.2~ A.0 yoa 0 Yo a o

+ ( 2 + Gn (20)20o2 2a2  b  0

where

Ar R R-r0 , Az - Z, G- G - 1 1/2 0
2 + Po/mcr

0

(V/Y2 ) (1/2 + in + next r je- Bex"/
0r' b ex ro 0 zo0 ' mc'

and v is the Budker's parameter.

2
Equation (20) describes the ring orbits near the minor axis, when y >> 1.

These orbits are centered around the minor axis of the torus when the

coefficient of the (7) term is zero, i.e., when
0

p 6 r 2-. 80° v [ (T ) +tn rb (21)

mcr0  2Y0 2rb

For (rb/a)2 << 1 and Y > 1 1, Eq. (21) predicts that- 0. Therefore, the

4. m0
orbits are circular when the external field index is approximately equal to 0.5,

in agreement with the computer results shown in Figs. 7 and 13.

This result is not in agreement with previous work, 19'20'22' which for J

constant predicts circular orbits when

n -- 1 (22)2 1 + (2v/y ) [1/2 + in --]
rb

"--12

-. ~- -- W W, 'r %r%~ : 4 'S. h\'4.-C~

.4w~*,y%~**Z.6



It has been determined that the discrepancy is due to an inconsistency in

the expansion that gave erroneous results for the two slow frequencies
5,:.,

w r and wz and made the expression for the field index, i.e., Eq. (22),

invalid.

Additional results from Eq. (7b) are shown in Figs. (16) to (19). The

various parameters for these runs are listed in Table IV. As the ring current

increases, the orbits are dramatically modified as manifested by the results

of Fig. 18. Midway to the wall, the orbits change from circles to finite

- width C shaped forms that evolve to cresents or "bananas". At the tips of the

crescents the bounce frequency becomes zero and the macroscopic beam motion

transitions from diamagnetic to paramagnetic and vice versa. Particle in cell

computer simulation results show that the beam can go through such a

transition without any noticeable interruption. A typical case is shown in

NFig. 20. The various parameters of this run, that lasted for more than 1

microsecond, are listed in Table V. Figure 20a shows the orbit of the center

of the ring in the r,z plane. The time interval beween two successive dots is

20 nsec. According to Figs. 20b and 20c the ring envelope changes only

slightly during the run.

V. Extreme of the Constant of the Motion

*The extreme of Eq. (5) furnishes useful information on the dynamics of

the ring in the r-z plane. First, we will show that this extreme is the

radial balance equation of motion for the reference electron.

Setting the partial derivative of Eq. (5) with respect to r equal to zero

ay le mc - 0, (23)

3r12

• mc 3r

.ILI

;5.

:. . '-''''i . ' :' ' ';.'I: .



__ and using -the relation Y -(1 + 2 )2 and Eq. (6), we obtain

M ext 3A self

ll et 44 (24)
3r 2- -4 airmcr me mc

where we have assumed that 3 - v/c is approximately equal to - V v/c.

Substituting Eq. (6) into Eq. (24) and using the equations

B ext (25a)" Bz r

A self aAself
B s e l  - + - (25b)
z r 3r

and

Er r- (25c)

it is obtained

V2 ext iself)

- lei - [Er + :1(B~ + Bs)j (26)
rr

i.e., the radial balance equation. This equation gives the equilibrium

position of the ring, which is located along the 5r axis. At this position

the reference electron at the centroid of the ring moves only along the
%:

% toroidal direction, i.e, vr = vz = 0.

When the equilibrium position is at r - ro , the toroidal velocity of the

* reference electron can be determined from Eqs. (6) and (21) and is

14

%I10r



2

0O 20 0b- n7
Vso 2 b " (27)

0 b

With the exception of the very small term on the numerator, Eq. (27) is the

same with the expression reported previously (20) for beams with square

current density profile.

The external magnetic field Be x t required to confine the ring at r - r

can be readily found from Eq. (27). Omitting the small term in the numerator

of Eq. (27),w obtain

e- M nsp  [ + (/2 + n -L (28)
zo so "o rb

where the single particle magnetic field is B5p 0

The magnetic field required to maintain the bean at an equilibrium
..1

position that is different than r0 can also be determined from the radial

balance equation. Substituting Er and Bs e l f from Eqs. (12a) and (12e) into Eq.

4" (26), it Is obtained

2

next =BzPa I + ' [1/2 + tn - R(R-r 0 ) rb (" " r -7- + 1} (29)
b a (y0) 8a (CO)

Equation (29) has been derived under the assumption that v is not a function

of R.

The predictions of Eq. (29) are in excellent agreement with the result of

the NRL computer simulation code. Three examples are shown in Table VI.

*1 15
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VI. Summary

The non-linear beam dynamics in the plane transverse to the toroidal

magnetic field is studied using the two constants of the motion, instead of the

linearized equations of motion. This approach allows the beam orbits to be

- determined over the entire minor cross-section of the torus and not only near

the minor axis.

It was found that the orbits are sensitive to the external field index, to

' the value of the constant of Eqs. (7) and to the beam current. The orbits in

the r,z plane always close inside the vacuum chamber, although often very near

the perfectly conducting wall. As a result, beam interruption will occur

whenever the electron ring moves along one of these orbits.

In addition, it has been shown that the extreme of Eq. (5) provides

information on the external magnetic field required to confine the ring at its

equilibrium position and the displacement of the equilibrium position when the

beam energy is not matched to the vertical field.

"1p

.-
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Table I

Parameters for the runs shown in Figs. (2) to (5)

Parameter Fix.2 Fig.3 Fi.4 F

Torus major radius r0 (cm) 100 100 32 32

Torus minor radius a (cm) 16 16 16 16

Electron ring minor radius rb (cm) 3 3 3 I 3

Electron ring vertical displacement Z (cm) 0 0 0 0

Table II

Parameters for the results shown in Figs. (6) to (8)

Fix. 6 Fix. 7 Fig. 8

- External field index 0.35 0.5 0.65

Torus major radius (i) 100 100 100

Torus minor radius (cm) 16 16 16

Ring minor radius (cm) 3 3 3

Ring current (A) 5 5 5

Electron energy (Me,) 3.123 3.123 3.123

Betatron field Bzo (G) 138.4 138.5 138.5

Pe/mcr o  -0.0018 -0.0020 -0.0023

I'I

17
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Table III

Parameters of the computer simulation runs in Figs. (12) to (14)

Fig. 12 Fig. 13 Fig. 14

External field index n 0.35 0.5 0.65

Initial beam energy yo - 7.117

Beau current I (A) - 5 KA

Torus major radius ro (cm) - 100

Initial beam minor radius rb (cm) - 3

,% Torus minor radius a (cm) - 16

Betatron magu. field at to, z 0 o, Boz (G) = 136.2

Toroidal magn. field at ro , z = 0, Bo (G) - 388

Initial emittance e (rad - cm) - 0.1

S

I1



Table IV

Parameters for the runs shown in Figs. (16) to (19)

Cylindrical Potentials

Parameter Fig. 16 Fig. 17 Fig. 18 Fig. 19

Torus major radius ro (cm) 100 100 100 100

Torus minor radius a (cm) 16 16 16 16

Electron ring minor radius rb (cm) 3 3 3 3

Electron ring energy E (MeV) 1.0 1.0 3.0 1.0

Electron ring current I (kA) 1.0 2.0 10.0 1.0

External field index n 0.5 0.5 0.5 0.5

Equilibrium position Req 100 100 100 112

Vertical magnetic field Sao (G) 51.74 56.08 159.24 53.52

Norm. canonical angular momentum 1 0 0 0 -2.37x10-3

S. "
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Table V

Parameters of the computer simulation run shown in Fig. 20.

Run No. D1/111.50

Initial beam energy yo - 2.76 (E - 0.9 HeV)

Beam Current I (kA) I

Major radius ro (cm) 1 100

Initial beam minor radius rb (cm) - 2.5

Torus minor radius a (cm) - 16

* Initial beam center position ri (cm) - 111.0

* Betatron magn. field at ro , z - 0, Boz (G) - 47

Toroidal magn. field at ro, z - o, Boe (KG) - 400

Initial emittance e (rad - cm) - 0.175

Initial temperature spread (half-width)- - 0

External field index n - 0.5

Self field index n. 8.6
.-.

a,.: Wall conductivity =

Time step (nsec) - 0.10spa.

.

L-No. of particles - 2048
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Fig. 2. Normalized self magnetic vector potential from Eq. (10a) and from

computer code PANDIRA. The various parameters are listed in

Table I.
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Fig. 3. Normalized self stream function R - Rae as a function of radial

distance R. The various parameters are listed In Table I.
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* Fig. 4. Normalized self electric potential as a function of R from Eq. (l0b) and

computer code PANDIRA. The various parameters are listed in Table i.
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Fig. 5. Normalized self stream function RA sel as a function of radial distance

R for a smaller major radius torus than Fig. 3. The various parameters are

listed in Table I.
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* Fig. 6. Orbits of the ring centroid in the transverse plane from Eq. (7b) and the

* potential of Eq. (11), for an external field index n -0.35. The rest of

the parameters are listed in Table HI.
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Fig. 9. Orbits of the ring centroid in the transverse plane from Eq. (7b) and the

0potentials of Eq. (10) for n -0.35. The rest of the parameters as in

- Table II.
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• Fig.12. Computer simulation results showting the orbit of the ring centroid in the
transverse plane for n - 0.35. The various parameters for this run are

listed In Table 111. The initial ring position was R =108 cm, Z 0 .
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Fig.14. Computer simulation results showing the orbit of the ring centroid 88 in

Fig. 12, but for n 0.65.
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Fig.15a Radial ring envelope as a function of time for n - 0.5. The rest of the

parameters as in Fig. 13.
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Fig.20a Computer simulation results showing the orbit of the ring centroid in the

transverse plane. The time interval between two dots is 20 nsec. The

various parameters for this run are listed in Table V. About 40 nsec

before the end of the run the bounce frequency became zero without any

noticeable disruption of the ring.
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